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Abstract-The present paper describes the simulation of phase change problems involving simultaneous 
multiple interface fronts employing the finite element method. Much of the past investigations employing 
finite elements have been restricted to primarily a single phase change situation. The existence of more than 
one phase, that is, the presence of multiple phase fronts poses certain challenges and further complications. 
However, the results provide a very interesting thermal behavior for this class of problems. In this paper, 
attention is focused on fixed grid methods and the trapezoidal family of one-step methods using the 
enthalpy formulations. Illustrative examples which handle simultaneous multiple fronts in phase change 

problems are presented. 

INTRODUCTION 

Numerous applications involving thermal heat con- 
duction with phase change are of interest in advanced 
spacecraft and space station technology, and the prob- 
lems related to various forming processes, ablation, 
castings, solar energy related applications, energy 
storage, etc. For certain materials the phenomenon of 
phase change occurs over a wide band of temperature 

ranges. Such problems permit fairly reasonable 
approximations to physically model the situation. For 
several other materials, the phase change phenom- 
enon takes place instantaneously with almost no tem- 
perature variation. These problems are characterized 
by a Dirac-&type behavior and are slightly more 
difficult to handle computationaly. Over the years, a 
number of analytical and numerical approaches have 
been attempted for the above situations. To-date, one 
can reasonably expect to simulate these problems with 
certain amount of con:Tdence. Both ‘finite difference’ 
and ‘finite elements’ have been extensively employed 
over the years. HowEver, because of the several 
inherent advantages 01‘ the finite element method to 
handle complex geoml:tries, treatment of boundary 
conditions, ability to interface with thermal-stress 
models for evaluating residual stresses, and the like, 
there is increased attention in employing the finite 
element method which is the chosen method in the 
present paper. 

The predominant classes of techniques which can 
be identified in literature are the so called ‘fixed grid’ 
and ‘front tracking’ techniques with deforming grids. 

t Author to whom correspondence should be addressed. 

Whereas the former is fairly robust and most com- 
monly employed due to its simplicity in coding effort 
and capability to handle general phase change situ- 
ations with the phase front evaluated from the cal- 
culated temperature field, in the latter, the tem- 
perature field and the location of the phase fronts are 
both variables. Here, continuous monitoring of the 
phase front position is crucial and implementation 
aspects are rather cumbersome. The predominant 
classes of methods which can be identified in literature 
encompass the ‘apparent heat capacity methods’, the 
‘fictitious heat flow’, or ‘source based methods’, and 
‘enthalpy based methods’. All of these have been quite 
extensively used and the pros and cons are well docu- 
mented in literature [l-5] and references thereof. The 
predominant classes of solution schemes employing 
the finite element method which can be identified in 
literature for handling phase change problems include 
the generalized trapezoidal family of one-step 
methods [6], the DuPont II scheme [7]. and the scheme 
due to Lees [8]. Both implicit and explicit solution 
strategies have been utilized for the simulation of 
phase change phenomenon. While explicit methods 
suffer from the drawbacks of conditional stability, 
they are relatively more easy to code than the cor- 
responding implicit methods which have the advan- 
tage of unconditional stability. Although explicit 
methods require less computational effort per time 
step than the implicit counterparts, many analysts 
prefer the implicit formulations, which, for the total 
duration of the transient analysis are cited to be com- 
putationaly less expensive. In comparison to tra- 
ditional practices for phase change problems, more 
recent research efforts due to Tamma and Namburu 
[5] and Namburu and Tamma [9] identify alternate 
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NOMENCLATURE 

c specific heat 
CAHC specified as 8H/80 
c~, cL specific heat of solid and liquid, 

respectively 
Cm specific heat in the freezing interval 
C system capacitance matrix 
h convection coefficient 
H enthalpy function 
k thermal conductivity 
k0 components of the element 

conductivity matrix 
K system conductance matrix 
5e latent heat 
N~ element interpolation functions 
Q internal heat generation per unit 

volume 
Q system heat load vector 
R domain 
OR boundary 

t time level 
p density 
P .  PL density for solid and liquid, 

respectively 
p., density in the freezing interval 
0 temperature vector 
00 initial temperature vector 
Or,, melting temperature 
A0 half temperature range over which 

phase change occurs 
a Stefan-Boltzmann constant 
e emissivity 

stability parameter for time 
integration. 

Subscripts 
n time level 
s, L solid and liquid phases, respectively 
m freezing interval representation. 

formulations which employ flux-based represen- 
tations and enthalpy formulations which possess 
several computationally attractive features, wherein, 
for certain phase change problems, explicit forms are 
competitive to implicit forms, although both are 
indeed applicable for handling general situations. 

Many of the past investigations employing finite 
elements have been restricted to a single phase change 
situation. The existence of more than one phase, that 
is, the simultaneous presence of multiple phase fronts, 
poses certain challenges and further complications. It 
is in this regard that the present paper seeks to describe 
the transient thermal behavior employing the finite 
element method for accommodating the co-existence 
of simultaneous multiple phases. For illustrative pur- 
poses, attention is confined to fixed grid techniques 
although front tracking methods may also be applied. 
Williams and Curry [10] employ finite difference for- 
mulations and analyze a one-dimensional two phase 
multi-interface Stefan problem and provide inter- 
esting results. Motivated by technical discussions with 
Curry(author of ref. [10]) about multi-interface phase 
change problems in general, and its importance for 
several practical situations, the present paper 
describes the formulations, applicability and simu- 
lation of phase change problems with simultaneous 
multiple phases employing the finite element method. 
In particular, the simultaneous existence of two and 
three interface phase front situations is presented 
although one may generalize to the co-existence of 
any arbitrary number of phases and the associated 
thermal interactions and behavior. Numerical exam- 
ples are presented which accommodate multiple phase 
fronts and therein describe the transient thermal 
behavior for a variety of situations. 

MATHEMATICAL MODEL 

The governing model equations following the classi- 
cal theory of nonlinear heat conduction in domain R 
are given by : 

c 0 80 p , (  ) - ~ = ( k i ; 0 j ) , i + Q  (xl, t ) ~ R x ( O , T ) ,  (1) 

where p is the density, G, is the specific heat, k~ is 
the symmetric thermal conductivity tensor, Q is the 
generated internal heat flow source per unit volume 
and 0 is the temperature field. Let R be enclosed by a 
boundary surface 8R = 8Rp u 8Rq where 8Rp and c~Rq 
are non-overlapping subregions of OR which consists 
of the prescribed temperature field boundary ORp and 
the natural flux boundary 0Rq. 

The boundary and initial conditions are typically 
represented as 

0 = Op on 8Rp 

q,n, + qs -- h ( O -  Oh) -- ac.(O 4 -- 04) = 0 

(2) 

o n  8Rq 

(3) 

and 

O(x i ,  I = O) = 0 i X i ~. R. (4) 

Equations (1)-(4) refer to unsteady nonlinear 
thermal fields with thermophysical properties depen- 
dent upon temperature. The quantities 0s, 
Oh = h(O-Oh),  and 0r = a~(04- 04), represent surface 
heating per unit area, the rate of heat flux per unit 
area due to convection, and the heat flux rate per unit 
area due to radiation, respectively, on 8Rq. 

Focusing attention on fixed grid techniques for the 
numerical simulation of general multi-phase change 
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problems, the interface position is generally at some 
unknown location in the element. The evolution of 
the latent heat can be treated in terms of the ther- 
mophysical properties (specific heat) which are tem- 
perature dependent. Introducing the enthalpy func- 
tion defined as 

H = pc(O) dO, (5) 
ref 

where 0re f is a reference temperature, for the classical 
Stefan problem one can write 

f i t  or pe~(O) 
H = dO [0 < 0m) 

H = d 0 + p S e +  pCL(O ) dO 
d0m 

(0 > 0m), 

( o , q ( o o )  : 
~ ] \ ~ j  (k~fl,j),~+Q (x~,t)eRx(O,T) (8b) 

o r  

CAncO = (k~jO, j),i + Q 

where CAnC = OH/dO. 

(xi, t) e R x (0, T), (8c) 

Finite element discretization 
The finite element discretization is briefly described 

next and follows the standard classical Galerkin pro- 
cedures. Introducing the approximation 

(6a) 0~ = N~O~, (9) 

where N, are the element interpolation functions into 
equation (8c), a residual is obtained. Multiplying the 
residual by a weighting function (W, = N~) and inte- 
grating over the domain R, the resulting discretized 

(6b) representations are typically obtained as 

where the subscripts s and L denote the solid phase 
and liquid phase, respectively, L~ a denotes the latent 
heat, and 0,1 represents the melting temperature. 

In the numerical implementation, this direct evalu- 
ation requires spreading the phase change across a 
temperature interval and thus introducing a phase 
change (melting or freezing) range. This phase change 
range must be kept small to avoid too much deviation 
from the original phase change (freezing or melting) 
problem (Stefan problem). To account for the finite 
phase change interval [0ml, 0m2], the enthalpy may be 
approximated as 

f 
0 

H= psc~(O)dO (0 < 0ml ) (7a) 
d0~f 

(7b) 

H= p~G(O)dO+ Pm~A-o +pmcm(O) dO 
ref Jgml 

(0ml < 0 < 0m2 ) 

fi ~m i f0m2 
H = p~c~(O) d0 + p~,L~° + p~Cm(O) dO 

ref J0ml 

+ pLCL(O) dO (0 > 0m2), 
ra2 

where 0ml = 0m--A0 and 0m2 = 0m+A0 and A0 is a 
half-temperature range over which phase change 

1 occurs. The quantities cm = i (c~ + CL) and 
Pm= ½(Ps +RL) are the specific heat and density in the 
freezing or melting interval. 

Introducing the definition of enthalpy into the 
model equation (1), leads to 

0H 
0~ = (kuOj)'i + Q (x,, t) ~ R × (0, T) 

where 

C(0)0+K(0)0 = Q(0), (10) 

C = ~, fro CAncNc, N~ dR 

or equivalently 

(11) 

K=~fRkijN~t,iNfl,./dR-~fORq(h"~°~r)N~NfldR 

(12) 

Q = ~ fR QN~ dR + ~ [ N~(qs + hOn-]-0~r0r) dR 
e dR# 

(13) 

and the summations are taken over the contributions 
of each element Re in R. The term ctr is given by 

0~ r = 0"/3(02 -}-02)(0~-0r) ,  (14) 

where Or is the radiation equilibrium temperature. 

Time discretization 
For the time discretization, the trapezoidal family 

(7c) of one-step a-methods is quite popular although 
other schemes as mentioned earlier have been used [1- 
5]. 

CO,+I +K0,+I = Q,+I (15a) 

0.+1 = O. + AtO.+~ (15b) 

0.+~ = (1 - ~ )0°  + ~ 0 ° + 1 ,  0 5 c )  

where At denotes the time step. e is a free parameter 
which controls the stability and accuracy of the 
scheme and is usually taken to be 0 ~< e ~< 1. Experi- 

(8a) ence indicates that the e = 1 (Euler-backward) with a 
lumped capacitance is the most favorable of the e- 
methods and is adopted here. 
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Considerations in phase change modeling/tracking the 
fron ts 

In the numerical simulation of phase change prob- 
lems, approximating the term Ca.c in the capacitance 
matrix equation (11) is a critical step. Various 
approximation methods have been suggested and they 
are well documented in refs. [1-5]. In the present 
study, we restrict attention to that due to Del Guidice 
et al. [11] which has been cited to yield satisfactory 
results 

+ 

C A H C  - -  

(161 

where the enthalpy H rather than the heat capacity is 
also interpolated [12, 13] as follows: 

H = N~H~, (17) 

where the N~ are the shape functions and H~ are the 
nodal values of the enthalpy. 

When employing fixed grid methods for phase 
change problems involving a single face front, it is 
customary to first evaluate the temperature field and 
then evaluate the interface position by identifying 
elements whose nodal points are just above/below the 
melting/freezing temperature. In contrast to this, for 
the numerical simulation of phase change problems 
involving the existence of simultaneous multiple phase 
fronts, often, there are situations which arise at certain 
time points of the transient, wherein element tem- 
peratures over some of the regions in the domain 
closely approximate the actual melting/freezing tem- 
perature. This causes numerical difficulties in physi- 
cally locating the interface positions. Regardless of 
the finite element space discretization, since adjacent 
element nodal values of temperature are in close prox- 
imity to the actual melting/freezing temperature, there 
may be a band of spatial locations which may likely 
seem to satisfy the criterion for locating the front 
position when they are interpolated upon. In view of 
these considerations, in the present study, the actual 
melting/freezing temperature is replaced as 

O*m.f = Om,f+ ~O, (18) 

where O* s is the approximated melting/freezing tem- 
perature and 60 is a small incremental temperature 
field. Therein, the interface positions are interpolated 
upon in a straightforward manner employing the cri- 
terion 

IO,-O*m,~l < ~to,, (19) 

where eto~ is a user specified tolerance. 

NUMERICAL EXAMPLES 

This section presents the numerical simulation of 
phase change problems involving the simultaneous 

existence of multiple phase fronts employing the finite 
element method. The enthalpy model described pre- 
viously is adopted here in conjunction with the Euler- 
backward (ct = 1) one-step solution scheme. The 
capacitance was assumed to be lumped and the 
approximation technique of Del Guidice et al. [11] is 
used. 

The thermal models tested in the present study 
involved: (a) water, and/or (b) tin as the substances 
and the thermophysical properties and relevant data 
are taken from ref. [10] and are depicted in Table 1. 
The numerical models were evaluated for both sub- 
stances in examples 1-3 and were evaluated for water 
substance in examples 4-6. 

Example  1 : liquid-solid-liquid. 

0initial = 0m + 55.56K t = 0 

00 =0m-55 .56K 0 < t ~ <  1000s 

00 = 0 r e + I l l . I l K  t >  1000s. 

Example  2 : liquid-solid-liquid. 

0 i n i t i a  I = 0,,+55.56K t = 0 

0o =0m-55 .56K 0< t~<1000s  

0o = 0m+27.78K t > 1000s. 

Example  3 : solid-liquid solM. 

0 i n i t i a  I = 0 m - -  55.56K t = 0 

0o =0m+55.56K 0 < t ~ <  1000s 

00 = 0,1,-27.78K t > 1000s. 

Examples 1, 2, and 3 were analyzed until com- 
pletion of all phase changes in each of the substances, 
namely water and tin, respectively. These examples 
involve the simultaneous presence of two interface 
phase fronts. There were 40 linear two-noded elements 
employed for the one dimensional models and a uni- 
form time step At = 5.0 s was used. 

Figures 1 6 depict the numerical simulations for 
each of the substances, namely, water and tin, respec- 
tively. The transient temperature variations and the 
locations of the multiple-phase fronts (freezing and 
melting phase fronts) are also presented for each test 
case. 

Figure la presents the temperature history while 
Fig. l b presents the phase fronts location for example 
1 (water substance). It is interesting to note that in 
this example, during the initial stages (t < 1000) there 
is only one moving phase front (freezing front) and 
later on in the transient (t > 1000), the second phase 
front (melting front) is initiated at time t > 1000 s via 
the change of the associated boundary conditions. For 
the second stage, t > 1000, from the time of initiation 
of the melting front, the initial freezing phase front 
now no longer progresses ahead, but interestingly tra- 
verses backward while the second phase front moves 
forward until the two phase fronts coalesce after a 
certain time lapse, thereby, resulting in a single phase 
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Table 1. Thermal properties of water and tin 

Thermal properties Water Tin 

Heat conductivity of solid Ks 
Heat conductivity of liquid KL 

Specific heat of solid Cs 
Specific heat of liquid c L 

Density of solid Ps 
Density of liquid PL 

Latent heat L 
Melting temperature 0m 

2.179 W ( m ' K ) - '  58.8 W (m.K) -] 
0.588 W (m.K) -L 33.55 W (m-K) -1 
1966.48 J (kg" K) -I 225.936 J (kg- K) -j 
4184.00J(kg'K) I 259.408J(kg-K) l 

921.1kgm 3 7304.4kgm 3 
999.6 kg m -3 6687.9 kg m -3 
334720 J kg-I 59040.9 J kg i 

273 K 505.22 K 

(liquid phase). The locations and times of  the various 
phases existing in the material has numerous practical 
benefits for engineering applications involving freez- 
ing and melting. 

Figure 2 presents the thermal behavior, namely, 
temperature histories and multiple phase front pos- 
ition histories of  example 2 in water substance. The 
phase front developraent process is similar to that of  
example 1 but the second stage involves a longer time 
period since the boundary conditions are different. 
Figure 3 shows the results for example 3 (water sub- 
stance), which is solid-l iquid-solid case in comparison 
to the previous examples which represent l i q u i ~  
solid-liquid case. In this example, the time period for 
the initial front to traverse backward is significantly 

smaller. Figures 4-6 show the results for examples 
1-3 with the substance being tin instead of  water and 
a similar phenomenon can be seen for temperature 
and phase front histories. The results presented agree 
qualitative with those in ref. [10]. Unlike single phase 
change problems, the results presented provide a 
unique thermal behavior of  the initial phase front 
progress and its interaction (attraction) with the 
second front. The results also clearly provide an 
understanding of  the phase change phenomenon when 
simultaneous multiple phase fronts are involved. 

The examples that follow next illustrate the situ- 
ations when more than two phase fronts exist sim- 
ultaneously for water substance only. In these exam- 
pies, 40 linear two-noded elements and uniform time 

o . . ~ , l e -  ~,. ,0 ,=)  
. . . f  • , :  o.o<=, 

° ~ p -  ° t= 4oo.o(sec) 

~ IP  m t=  800.O(sec) 

o 1 = 1200.0 (see) 
• t = 1600.0 ( ~ )  

200 • , , , • , • , , , • 

I 2 3 4 5 

I - [ o r i z o n t a l  C o o r d i n a t e  ( c m )  

at. Temperalure as function of space coordinate. 

2 . . Travers~ back 
Liquid to melting front 

FrcczJng F ~  : 

), 
Liquid 

dr, 

A A Second Front 
O ' ~t 

1000 2000 
Time (see) 

b). Front positions as a function of time. 

Fig. 1. Temperature distributions and front positions (water, 
example 1). (a) Temperature as a function of space coor- 

dinate. (b) Front positions as a function of time. 

400 

m ooo o t jmZooo.,~- 

o° • ~= o . o ( ~ >  , o  
• * * t = 600.0 (see) 

** • t = 1200.0 (sec) 
o t = 3000.0 (see) 

2 0 0  m m " , m [ m m m m " 

I 2 3 4 5 
H o r i z o n t a l  C o o r d i n a t e  (cm) 

at. Temperature as function of space coordinate. 

2" L" id Traverses back 
iqu to melting front 

~ ~ F ~ z i n g  Fronl 

'~= i 

Liquid 

A~ o First Front 

A A Second Front 

O ~, 
1000 2000 

Time (see) 

b). Front positions as a function of time. 

Fig. 2. Temperature distributions and front positions (water, 
example 2). (at Temperature as a function of space coor- 

dinate. (b) Front positions as a function of time. 
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3 0 0 "  

o.  

d,t= 2.0 0 ~ )  

= t = 0.0 (Re) 

$ t = 400.0 (see) 
• t = 800.0 (see) 
o t = I2CO.0 (sec) 

t $ . $ $ . U U l u n  n u l l  l l U  I 

................... .~mmmnnuBnt~ B t~ u~t~n emmm 

l 2 3 4 5 

Horizontal  Coordinate (cm) 

a). Temperature as function of space coordinate. 

At = 2.0 (s~) Traven= Imek 
O FirstFront Solid ~ j ~ S o l i d  tofre~zlngflont 
A Second Front ~ r  -~ 

Liquid 
0,6"  Mel 

0.4" 

0.2" A 
A Solid 

3 

0 . 0 ~ )  - , • , • , • , • ~ . 

200 400 600 800 1000 1200 
Time (sec) 

b), Front positions as a function of time. 

Fig. 3. Temperature distributions and front positions (water, 
example 3). (a) Temperature as a function of  space coor- 

dinate. (b) Front  positions as a function of  time. 

600 " 

~ 500 

[, .  

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

== a t =  5.o ( ~ )  
m t = 0.O ( ~ )  
• t : 500.0 (scc) 

* t=  IC00.0(see) 
Im t = 2000.0 ( ~ )  

o t = 3000.0 (see) 

1'0 2'0 30 

H o r i z o n t a l  C o o r d i n a t e  (e ra )  

a). Temperature as function of space coordinate. 

1.0 I At = 2.0(see) Trave~esback 
O Fi~t Front Solid 0.81 A S  . . . .  F . . . .  ~ " ° ~  ~ 1 1 ~  to freezing from 

.~ 0.6 Mel 

07 
o,o~, . . . . . . . . .  ~ , 

0 200 400 600 000 1000 1200 
Time (see) 

b). Front positions as a function of  time. 

Fig. 5. Temperature distributions and front positions (tin, 
example 2). (a) Temperature as a function of space coor- 

dinate. (b) Front  positions as a function of time. 

700 " 

600" 

5 0 0 "  

At = 5.0 (see) 
m t = 0.0 (see) 
* t = 500.0 ( s ~ )  

• t =  lO00.O(see) ~"'. * t :  150o.0 (Re) 

= m ~ l I t = l l = m ~  ............. ~ ............. m 

I0 20 
Horizontal  Coordinate  (cm) 

a). Temperature as function of space coordinate. 

1.0 
At = 2.0 (s~) T r a v ~  bnck 

O Fi~t Front Solld ~ l ~ S ° l i d  to fi'v~zing from 
A SOc~d Fret ~ ~ 

o 
~ F~c 

0 .2  A 
A Solid 

0 .0  • ~ , ~ . ~ , , . ~ . 
200 400 600 800 1000 1200 

T ime  (see) 

b). Front positions as a function of time. 

Fig. 4. Temperature distributions and front positions (tin, 
example 1). (a) Temperature as a function of space coor- 

dinate. (b) Front  positions as a function of time. 

600 

~ 500 

E 
F, 

at = 5.0 (s~) 

t = 0.0 ( ~ )  
* t =  5 0 0 . 0 ( ~ e )  

t, I t = 1~10,0 (see) 
~ _  o t : 1500.0 (Re) 

. o O . ' ~ ~  .............. 

l0 20 
Horizontal  Coordinate (cm) 

a). Temperature as function of space coordinate. 

6 '  
S O I ~ 4 ~ . _ . . _ . ~  Travenes b~k 

to freezing fiunt 

"~'~ ~ ~ i ~  4.G, Melting Fret Liquid Solid 

Freezing Front 

(Re) 

A A Second Front 

O' /~ 
tO00 2000 

Time (see) 

b). Front positions as a function of time. 

Fig. 6. Temperature distributions and front positions (tin, 
example 3). (a) Temperature as a function of  space coor- 

dinate. (b) Front  positions as a function of  time. 
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step At = 5.0 s were employed which involve the sim- 
ultaneous existence c f the three interface fronts. The 
thermal behavior for these situations also has numer- 
ous practical benefits and the physical process of  phase 
change is of  fundamental  importance here. 

Example 4 : liquid-solid-liquid-solid. 

0initial 

0o 

0o 

00 

Example 

0initial 

00 

00 

00 

Example 

Oinitial 

Oo 

Oo 

Oo 

= 0m + 55.56K t = 0 

= 0m--55 56K 0 < t ~< 1000S 

= 0 r e + I l l .  I l K  1000 < t ~< 1500s 

= 0m--55 56K t > 1500s. 

5 : liquid-solid-liquid-solid. 

= 0 m "~ 55.56K t = 0 

= 0m-55 .56K 0 < t ~< 1000s 

= 0m+27.78K 1000 < t ~< 2000s 

= 0m--55.56K t > 2000S. 

6 : solid-liquid-solid-liquid. 

= 0 m -  55.56K t = 0 

= 0m+55.56K 0 < t ~< 1000s 

= 0 m - 2 7 . 7 8 K  1000 < t ~< 1120s 

= 0m+55.56K t > l120s. 

Figures 7-9 depicl: the numerical simulations for 
water substance for examples 4-6, respectively, in one- 
dimensional models. The phase front locations with 
time for each case are presented here. F rom Fig. 7, 
one can see that in example 4, during the initial stages 
(t < 1000) there is o~aly one progressing phase front 
(freezing front) and later on in the second stage 
(1000 ~< t ~< 1500), the second phase front (melting 
front) is initiated at which time the initial progressing 
front now traverses backward and changes into a 
melting front from a freezing front. During the third 
stage, t ~< 1500 in example 4, a third front (freezing 
front) is initiated. At  this point, there exist three 
phase fronts simultaneously. During the period 
1500 ~< t ~< 1720 s, th,~ first front (now a melting front) 
continues to traverse back as a melting front while the 

0 Third F~om 

2 Fr~zi 

Freezing Front 

Mehin 

f t.:,qeid [] 
[] Solid 

O 1000 20~00 3000  

Time (Sec)  

Fig. 8. Front positions as a function of time (water, 
example 5). 

second melting front continues to progress ahead to 
meet the third front until the liquid region between 
them shrinks and completely disappears. Note  that 
the second front only takes a very short time period 
to traverse backward and change into a freezing front 
before it meets the third front. After a further time 
lapse, at about  t = 1820 s, the first front changes back 
into a freezing front from a melting front and pro- 
gresses forward. It is interesting to note that the third 
front and first front seem to appear as if  a single front 
was discontinued during time period 1720 < t < 1820, 
al though they are entirely different fronts. This 
phenomenon is also evident in examples 5 and 6 (see 
Figs. 8 and 9) where example 6 is for the sol id- l iquid-  
solid-liquid case, while examples 4 and 5 are for the 
l iquid-solid-l iquid-solid case. It is noteworthy to see 
the development and interactions of  the second and 
third phase fronts within a very short period of  time 
in example 6. The last three examples clearly provide 
a better understanding of  the multiple phase change 
phenomenon in periodic heating and cooling situ- 
ations. 

CONCLUDING REMARKS 

The paper described the numerical simulation of  
phase change problems involving simultaneous mul- 
tiple phase fronts via the finite element method. The 
enthalpy model simulations were employed in con- 
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junc t ion  with the Euler -backward  solut ion scheme 
and  a lumped capacitance.  At ten t ion  was restricted to 
simple two-noded l inear elements. Numerical  for- 
mula t ions  were described with applicat ions to two 
different substances,  namely, water  and  tin, respec- 
tively, wherein,  multiple phase  fronts  were sim- 
ul taneously involved. The mult i- interface problems 
provide a very interesting thermal  behavior  in cont ras t  
to single phase  change problems and  pose certain 
addi t ional  complexities. The results clearly describe 
the physics and  nature  of  the thermal  behavior  and  
phase f ront  interact ions when  s imultaneous multiple 
phase fronts are involved. 
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